Tempered representations and nilpotent orbits
نویسندگان
چکیده
منابع مشابه
Tempered Representations and Nilpotent Orbits
Given a nilpotent orbit O of a real, reductive algebraic group, a necessary condition is given for the existence of a tempered representation π such that O occurs in the wave front cycle of π. The coefficients of the wave front cycle of a tempered representation are expressed in terms of volumes of precompact submanifolds of an affine space.
متن کاملSpherical Nilpotent Orbits and Unipotent Representations
then the coadjoint orbits of SL (2,R) fall into three basic classes; according to whether the Casimir function B (Z,Z) = h + xy is positive, negative or zero.(Here Z ≡ x ∗X + h ∗H + y ∗ Y .) The nature of these orbits becomes a little clear if we adopt a basis for which B is diagonal, setting Z0 = X − Y Z2 = X + Y Z3 = H we find B (Z,Z) = −z 0 + z 2 + z 3 That is, the invariant bilinear form on...
متن کاملQuantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits
Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...
متن کاملSeries of Nilpotent Orbits
We organize the nilpotent orbits in the exceptional complex Lie algebras into series and show that within each series the dimension of the orbit is a linear function of the natural parameter a = 1, 2, 4, 8, respectively for f4, e6, e7, e8. We observe similar regularities for the centralizers of nilpotent elements in a series and graded components in the associated grading of the ambient Lie alg...
متن کاملNilpotent Orbits and Commutative Elements
Let W be a simply-laced Coxeter group with generating set S, and let Wc denote the subset consisting of those elements whose reduced expressions have no substrings of the form sts for any non-commuting s; t 2 S. We give a root system characterization of Wc, and in the case where W corresponds to a nite Weyl group, show that Wc is a union of Spaltenstein-Springer-Steinberg cells. The latter is v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2012
ISSN: 1088-4165
DOI: 10.1090/s1088-4165-2012-00414-9